ALD HfO2, Al2O3, and PECVD Si3N4 as MIM Capacitor Dielectric for GaAs HBT Technology

نویسندگان

  • Jiro Yota
  • Kai Kwok
  • Ravi Ramanathan
چکیده

Characterization was performed on 60 nm +/3 nm films of atomic layer deposition (ALD) hafnium dioxide (HfO2) and aluminum oxide (Al2O3), and plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Si3N4) as MIM capacitor dielectric for GaAs HBT technology. The capacitance density of MIM capacitor with ALD HfO2 (2.73 fF/m 2 ) and Al2O3 (1.55 fF/m 2 ) is significantly higher than that with PECVD Si3N4 (0.92 fF/m 2 ). However, the breakdown voltage of the ALD HfO2 (34 V) and Al2O3 (41 V) is lower than that of PECVD Si3N4 (73 V). Additionally, the PECVD Si3N4 leakage current density is significantly lower than that of ALD HfO2 and Al2O3. As the temperature was increased from 25 o C to 150 o C, the leakage current of all films increased. The capacitance of ALD Al2O3 and HfO2 films was observed to change slightly, when the applied voltage was varied from -5 V to +5 V. No significant change in capacitance was seen for all three films, when the frequency was increased from 1 kHz to 1 MHz. The extracted quality factor at 1 GHz of the MIM capacitor with ALD HfO2 and Al2O3 is lower than that with PECVD Si3N4 by about 50%. These results show that the three films have different advantages, are suitable for, and can be used as MIM capacitor dielectric for GaAs HBT technology. The capacitor dielectric can be selected based on the specific electrical requirements, application, and operating conditions of the GaAs IC design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of atomic layer deposition HfO2, Al2O3, and plasma- enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology

Characterization was performed on the application of atomic layer deposition (ALD) of hafnium dioxide (HfO2) and aluminum oxide (Al2O3), and plasma-enhanced chemical vapor deposition (PECVD) of silicon nitride (Si3N4) as metal–insulator–metal (MIM) capacitor dielectric for GaAs heterojunction bipolar transistor (HBT) technology. The results show that the MIM capacitor with 62 nm of ALD HfO2 res...

متن کامل

Effects of Deposition Method of PECVD Silicon Nitride as MIM Capacitor Dielectric for GaAs HBT Technology

Thin silicon nitride (Si3N4) films deposited using plasma-enhanced chemical deposition (PECVD) method have been used as metalinsulator-metal (MIM) capacitor dielectric for GaAs heterojunction bipolar transistor (HBT) technology. The characteristics of the films, which were deposited at 300C, were found to be dependent on how the PECVD film was deposited. A silicon nitride film deposited as a mu...

متن کامل

DC and RF Characteristics of Advanced MIM Capacitors for MMIC’s Using Ultra-Thin Remote-PECVD Si N Dielectric Layers

We have fabricated advanced metal–insulator–metal (MIM) capacitors with ultra-thin (200 Å) remote-PECVD Si3N4 dielectric layers having excellent electrical properties. The breakdown field strength of MIM capacitors with 200-Å-thick Si3N4 was larger than 3.5 MV/cm, which indicates the excellent quality of the deposited Si3N4 film. The main capacitance per unit area extracted by radio frequency (...

متن کامل

The Effect of Different Dielectric Materials in Designing High Performance Metal-Insulator-Metal (MIM) Capacitors

Received Jan 24, 2017 Revised Mar 30, 2017 Accepted Apr 15, 2017 A Metal-Insulator-Metal (MIM) capacitor with high capacitance, high breakdown voltage, and low leakage current is aspired so that the device can be applied in many electronic applications. The most significant factors that affect the MIM capacitor’s performance is the design and the dielectric materials used. In this study, MIM ca...

متن کامل

Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer-deposited HfO2/Al2O3 nanolaminate gate dielectric

A systematic capacitance-voltage study has been performed on GaAs metal-oxide-semiconductor MOS structures with atomic-layer-deposited HfO2/Al2O3 nanolaminates as gate dielectrics. A HfO2/Al2O3 nanolaminate gate dielectric improves the GaAs MOS characteristics such as dielectric constant, breakdown voltage, and frequency dispersion. A possible origin for the widely observed larger frequency dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014